热心网友的回答:
一、 定义与例子 :定义 9.1 对向量组 ,如果存在一组不全为零的数 , 使得 那么, 称向量组 线性相关.
如果这样的 个数不存在, 即上述向量等式仅当 时才能成立, 就称向量组 线性无关. 含零向量的向量组 一定线性相关 , 因为 其中, 不全为零. 只有一个向量 组成的向量组线性无关的充分必要条件是 , 线性相关的充分必要条件是 .
考虑齐次线性方程组 (*) 它可以写成 , 或 , 其中 . 由此可见, 向量组 线性相关的充分必要条件是齐次线性方程组 (*) 有非零解. 也就是说, 向量组 线性无关的充分必要条件是齐次线性方程组 (*) 只有零解.
例1 向量组 是线性无关的 . 解: 设有 使 , 即 , 得齐次线性方程组 .
解此方程组得 , 所以向量组 线性无关. 例2 设向量组 线性无关, 又设 , 证明向量组 也线性无关. 证明:
设有 使 , 即 , 因为 线性无关, 故有 此线性方程组只有零解 , 也即向量组 线性无关. 定理 9.1 向量组 线性相关的充分必要条件是其中至少有一个向量可以由其余 个向量线性表示 .
证明: 必要性 设 线性相关, 即存在一组不全为零的数 , 使得 . 不妨设 , 则有 , 即 可以由其余 个向量 线性表示.
其实, 在向量等式 中, 任何一个係数 的向量 都可以由其余 个向量线性表示 . 充分性 设向量组 中有一个向量能由其余 个向量线性表示 . 不妨设 , 则 , 因为 不全为零, 所以 线性相关.
二、向量组线性相关和线性无关判别定理 :设矩阵 的列向量组为 , 矩阵 的列向量组为 ,其中矩阵 是通过对矩阵 做行初等变换后得到的.我们有以下定理:
定理 9.2 向量组 与向量组 有相同的线性相关性. 证明 :
记 .那么,当且仅当齐次线性方程组 有非零解时向量组 线性相关.当且仅当齐次线性方程组 有非零解时向量组 线性相关.
由于齐次线性方程组 或者只是对调了 的第 个方程与第 个方程的位置,或者只是用非零数 承 的第 个方程,或者只是把 的第 个方程的 倍加到第 个方程上去,这连个方程组一定是同解的,所以,对应的向量组 有相同的线性相关性. 定理 9.3 如果向量组 线性相关,那么 也线性相关.
证明 :向量组 线性相关,即存在不全为零的数 使 , 于是 , 但是 , 仍不全为零,因此,向量组 线性相关. 推论 9.
4 线性无关向量组的任意一个非空部分组仍是线性无关向量组. 定理 9.5 设有 维向量组 与 维向量组 如果向量组 线性无关,那么,向量组 也线性无关.
推论 9.6 维向量组的每一个向量新增 个分量成为 维向量.如果 维向量组线性无关,那么, 维向量组也线性无关.
反言之,如果 维向量组线性相关,那么, 维向量组也线性相关. 定义 9.2 在 型的矩阵 中,任取 行 列 ,位于这些行列交叉处的 个元素,不改变它们在 中所处的位置次序而得的 阶矩阵行列式,称为矩阵 的 阶子式.
型矩阵 的 阶子式共有 个. 定理 9.7 设 维向量组 构成矩阵 则向量组 线性无关的充分必要条件是矩阵 中存在一个不等于零的 阶子式.
推论 9.8 个 维向量组线性无关的充分必要条件是它们所构成的 阶矩阵的行列式不等于零. 推论 9.
9 当 时, 个 维向量 必线性相关. 思考题:1、 举例说明下列各命题是错误的 (1) 若向量组 线性无关,则 可由 线性表示; (2) 若有不全为零的数 使 则 线性相关, 也线性相关; (3) 若只有当 全为零时, 等式 才能成立 线性无关, 也线性无关; (4) 若 线性相关, 也线性相关, 则有不全为零的数 , 使 同时成立.
2、 判断下列向量组是否线性相关 : (1) ; (2) ; (3) ; (4) . 3. 设向量组 线性无关, 讨论向量组 的线性相关性 .
4、 设向量组 线性无关, 线性相关, 则 必可由向量组 线性表示. 5 、选择题 (1) 维向量组 线性无关的充分必要条件是 a. 存在一组不全为零的数 , 使 ; b.
中任意两个向量都线性无关 ; c. 中存在一个向量 , 它不能由其他向量线性表示 ; d. 中任意一个向量都不能被其他向量线性表示 .
(2) 已知向量组 线性无关, 则向量组 a. 也线性无关; b. 也线性无关; c.
也线性无关; d. 也线性无关. (3) 设有任意两个 维向量组 与 .
如果存在两组不全为零的数 与 使 则 a. 与 . 线性相关; b.
与 . 线性无关; c. 线性无关; d.
线性相关.
如何判断向量的线性相关和线性无关性
热心网友的回答:
1、定义法
令向量组的线性组合为零(零向量),研究係数的取值情况,线性组合为零当且仅当係数皆为零,则该向量组线性无关;若存在不全为零的係数,使得线性组合为零,则该向量组线性相关。
2、向量组的相关性质
(1)当向量组所含向量的个数与向量的维数相等时,该向量组构成的行列式不为零的充分必要条件是该向量组线性无关;
(2)当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关;
(3)通过向量组的正交性研究向量组的相关性;
(4)通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关。
(5)通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的;若向量组的秩小于向量的个数,则该向量组是线性相关的。
热心网友的回答:
1. 显式向量组
将向量按列向量构造矩阵a
对a实施初等行变换, 将a化成梯矩阵
梯矩阵的非零行数即向量组的秩
向量组线性相关 <=> 向量组的秩 < 向量组所含向量的个数2. 隐式向量组
一般是 设向量组的一个线性组合等于0
若能推出其组合係数只能全是0, 则向量组线性无关否则线性相关.
满意请採纳^_^.
芒克族的回答:
列出矩阵,对矩阵进行等效变换,最后化简成上三角矩阵形式,如果有的行全部元素为零,则线性相关,否则线性无关
热心网友的回答:
直接按照定义就可以了,或者把他们做成矩阵,如果对应的行列式值为零就说明是线性无关性否则是线性相关
怎样简单的判断线性相关和线性无关
北大学霸的回答:
一、 定义与例子 :定义 9.1 对向量组 ,如果存在一组不全为零的数 , 使得 那么, 称向量组 线性相关.
如果这样的 个数不存在, 即上述向量等式仅当 时才能成立, 就称向量组 线性无关. 含零向量的向量组 一定线性相关 , 因为 其中, 不全为零. 只有一个向量 组成的向量组线性无关的充分必要条件是 , 线性相关的充分必要条件是 .
考虑齐次线性方程组 (*) 它可以写成 , 或 , 其中 . 由此可见, 向量组 线性相关的充分必要条件是齐次线性方程组 (*) 有非零解. 也就是说, 向量组 线性无关的充分必要条件是齐次线性方程组 (*) 只有零解.
例1 向量组 是线性无关的 . 解: 设有 使 , 即 , 得齐次线性方程组 .
解此方程组得 , 所以向量组 线性无关. 例2 设向量组 线性无关, 又设 , 证明向量组 也线性无关. 证明:
设有 使 , 即 , 因为 线性无关, 故有 此线性方程组只有零解 , 也即向量组 线性无关. 定理 9.1 向量组 线性相关的充分必要条件是其中至少有一个向量可以由其余 个向量线性表示 .
证明: 必要性 设 线性相关, 即存在一组不全为零的数 , 使得 . 不妨设 , 则有 , 即 可以由其余 个向量 线性表示.
其实, 在向量等式 中, 任何一个係数 的向量 都可以由其余 个向量线性表示 . 充分性 设向量组 中有一个向量能由其余 个向量线性表示 . 不妨设 , 则 , 因为 不全为零, 所以 线性相关.
二、向量组线性相关和线性无关判别定理 :设矩阵 的列向量组为 , 矩阵 的列向量组为 ,其中矩阵 是通过对矩阵 做行初等变换后得到的.我们有以下定理:
定理 9.2 向量组 与向量组 有相同的线性相关性. 证明 :
记 .那么,当且仅当齐次线性方程组 有非零解时向量组 线性相关.当且仅当齐次线性方程组 有非零解时向量组 线性相关.
由于齐次线性方程组 或者只是对调了 的第 个方程与第 个方程的位置,或者只是用非零数 承 的第 个方程,或者只是把 的第 个方程的 倍加到第 个方程上去,这连个方程组一定是同解的,所以,对应的向量组 有相同的线性相关性. 定理 9.3 如果向量组 线性相关,那么 也线性相关.
证明 :向量组 线性相关,即存在不全为零的数 使 , 于是 , 但是 , 仍不全为零,因此,向量组 线性相关. 推论 9.
4 线性无关向量组的任意一个非空部分组仍是线性无关向量组. 定理 9.5 设有 维向量组 与 维向量组 如果向量组 线性无关,那么,向量组 也线性无关.
推论 9.6 维向量组的每一个向量新增 个分量成为 维向量.如果 维向量组线性无关,那么, 维向量组也线性无关.
反言之,如果 维向量组线性相关,那么, 维向量组也线性相关. 定义 9.2 在 型的矩阵 中,任取 行 列 ,位于这些行列交叉处的 个元素,不改变它们在 中所处的位置次序而得的 阶矩阵行列式,称为矩阵 的 阶子式.
型矩阵 的 阶子式共有 个. 定理 9.7 设 维向量组 构成矩阵 则向量组 线性无关的充分必要条件是矩阵 中存在一个不等于零的 阶子式.
推论 9.8 个 维向量组线性无关的充分必要条件是它们所构成的 阶矩阵的行列式不等于零. 推论 9.
9 当 时, 个 维向量 必线性相关. 思考题:1、 举例说明下列各命题是错误的 (1) 若向量组 线性无关,则 可由 线性表示; (2) 若有不全为零的数 使 则 线性相关, 也线性相关; (3) 若只有当 全为零时, 等式 才能成立 线性无关, 也线性无关; (4) 若 线性相关, 也线性相关, 则有不全为零的数 , 使 同时成立.
2、 判断下列向量组是否线性相关 : (1) ; (2) ; (3) ; (4) . 3. 设向量组 线性无关, 讨论向量组 的线性相关性 .
4、 设向量组 线性无关, 线性相关, 则 必可由向量组 线性表示. 5 、选择题 (1) 维向量组 线性无关的充分必要条件是 a. 存在一组不全为零的数 , 使 ; b.
中任意两个向量都线性无关 ; c. 中存在一个向量 , 它不能由其他向量线性表示 ; d. 中任意一个向量都不能被其他向量线性表示 .
(2) 已知向量组 线性无关, 则向量组 a. 也线性无关; b. 也线性无关; c.
也线性无关; d. 也线性无关. (3) 设有任意两个 维向量组 与 .
如果存在两组不全为零的数 与 使 则 a. 与 . 线性相关; b.
与 . 线性无关; c. 线性无关; d.
线性相关.
资料书上和教材上的都是对的,两者并不矛盾,注意区分下列两种说法 1 向量组向量总数不变但都增加 或都去掉 相同个数的分量 2 向量组每个向量的分量个数 即维数 不变但向量组向量个数增加 或减少 向量组线形相关可理解为存在一组係数,对向量组的每一维,该係数对应的线性方程都成立,线性无关则可理解为不存在...
你好!把4个向量拼成一个方阵,向量组线性相关的充分必要条件是方阵的行列式为0。经济数学团队帮你解答,请及时採纳。谢谢!高中数学代数学习怎么学 高中数学怎么学?高中数学难学吗?数学这个科目,不管是对于文科学生还是对于理科学生.都是比较重要的,因为他是三大主课之一,它佔的分值比较大.要是数学学不好,你可...
对于线性方程组,我们只能进行行变换,不能进行列变换,其实道理很简单a11x1 a12x2 a13x3 b1 a21x1 a22x2 a23x3 b2 a31x1 a32x2 a33x3 b1 想想看,我们进行列变换,就是在对不同的未知数前面的係数进行加减乘除,这么做是什么?但是我们进行行变换,这是对...